cwiki.cz

Eukleidovský prostor



Eukleidovský prostor je matematický výraz pro člověku nejbližší, intuitivní představu prostoru. V tomto pojetí prostoru, formalizovaném Eukleidovými axiomy, začíná školní vzdělávací proces; týká se především geometrie, ale také fyziky a algebry. Pojmu se užívá zejména v kontrastu k jiným prostorům.

Obsah


Dimenze prostoru

Původní představa eukleidovského prostoru je dvojrozměrná (rovina, ve které rýsujeme své geometrické obrazce) či trojrozměrná. Postupným zobecněním si ale dokážeme představit i prostory vyšších dimenzí, ve kterých platí stejné Eukleidovy axiomy.


Metrika prostoru

Eukleidovský prostor je metrickým prostorem, tj. lze v něm zavést veličinu, kterou nazýváme metrika čili vzdálenost (každé dva body v prostoru mají mezi sebou určitou vzdálenost). Například kružnici pak definujeme jako množinu bodů, ležících v rovině, které mají od jednoho bodu (středu) stejnou vzdálenost. V eukleidovském prostoru platí tzv. eukleidovská metrika, která umožňuje, že např. kružnice se pak zobrazuje tak, jak jsme zvyklí (při jiné metrice by mohla mít kružnice např. tvar čtverce aj.).


Základní vlastnosti

Z Eukleidových axiomů vyplývají některé základní vlastnosti, které považujeme za samozřejmé:

  • rovnoběžky se v žádném bodě neprotínají (respektive někdy říkáme, že „se protínají v nekonečnu“);
  • součet úhlů v trojúhelníku je 180°.

Geometrie

Prostor, ve kterém jsme zvyklí od starověku podnes řešit geometrické úlohy, je eukleidovský prostor. Řešíme v něm úlohy planimetrie, stereometrie, analytické geometrie, perspektivy a další.


Fyzika

Prostor, ve kterém pracuje klasická fyzika, je eukleidovský.


Architektura

Projektování staveb probíhá v eukleidovském prostoru.


Lineární algebra

V lineární algebře se obvykle definuje jako konečněrozměrný unitární prostor nad množinou reálných čísel.

Vlastnosti

Eukleidovský prostor dimenze n se obvykle značí \({\displaystyle E_{n}}\).

Eukleidovský prostor je unitární prostor, a proto je na něm definován skalární součin.

Zavedeme-li v n-rozměrném eukleidovském prostoru kartézskou soustavu souřadnic, pak vzdálenost d mezi dvěma body X a Y o souřadnicích \({\displaystyle (x_{1},x_{2},...,x_{n}),(y_{1},y_{2},...,y_{n})}\) je určena vztahem

\({\displaystyle d={\sqrt {\sum _{i=1}^{n}{(x_{i}-y_{i})}^{2}}}}\)

Eukleidovský prostor \({\displaystyle E_{n}}\) bývá také označován jako kartézský prostor \({\displaystyle \mathbb {R} ^{n}}\), kde \({\displaystyle \mathbb {R} }\) označuje množinu reálných čísel. Kartézský prostor je tedy kartézským součinem n množin \({\displaystyle \mathbb {R} }\).

Rozšířením eukleidovského prostoru \({\displaystyle E_{n}}\) lze získat n-rozměrný komplexní prostor \({\displaystyle K_{n}}\). Prostor \({\displaystyle K_{n}}\) bývá označován také jako \({\displaystyle \mathbb {C} ^{n}}\), kde \({\displaystyle \mathbb {C} }\) je množina komplexních čísel.


Neeukleidovský prostor

Prostory, ve kterých naopak není splněno všech pět eukleidovských axiomů, se zabývá neeukleidovská geometrie.


Odkazy

Související články

Externí odkazy





Zdroj


Poslední aktualizace: 21.11.2021 03:32:09 CET

Zdroj: Wikipedia (autoři [Dějiny])    Licence textu: CC-BY-SA-3.0. Autory a licence jednotlivých obrázků a médií najdete buď v popisku, nebo si je můžete zobrazit kliknutím na obrázek.

Změny: Byly přepsány prvky designu. Byly odstraněny odkazy specifické pro Wikipedii (např. "Redlink", "Edit-Links"), mapy a navigační pole. Také některé šablony. Ikony byly nahrazeny jinými ikonami nebo odstraněny. Externí odkazy získaly další ikonu.

Důležité upozornění Vzhledem k tomu, že daný obsah byl v daném čase automaticky převzat z Wikipedie, ruční kontrola nebyla a není možná. Proto cwiki.cz nezaručuje přesnost a aktuálnost převzatého obsahu. Pokud by se mezitím objevily chybné informace nebo chyby v zobrazení, prosíme vás, abyste nás kontaktovali: e-mail.
Viz také: Tiráž & Ochrana dat.